Design and Development of 3KGF Thrust Stand

DOI:
https://doi.org/10.54060/a2zjournals.jmce.83Keywords:
Unmanned Aerial Vehicle(UAV), Thrust StandAbstract
This paper presents the design and development of a cost-effective, modular thrust stand capable of measuring up to 3 kgf of static thrust, tailored for testing electric propulsion systems in UAVs and drones. Utilizing accessible components like a 3 kg load cell, HX711 amplifier, 30A Hall effect sensor, and ESP8266 microcontroller, the system enables real-time wireless data acquisition for thrust, current, and power metrics. Ideal for academic and small-scale aerospace setups, the stand supports live monitoring, is easily modifiable, and lays the groundwork for advanced future testing such as torque, temperature, and multi-axis force analysis.
Downloads
References
M. A. Khan, S. A. R. Abu-Bakar, and M. S. H. Lipu, “Design and Development of a Thrust Measurement Stand for Small UAV Propulsion Systems,” Journal of Aerospace Technology and Management, vol. 11, 2019. [DOI: 10.5028/jatm.v11.1092](https://doi.org/10.5028/jatm.v11.1092)
S. F. Author, “Title of a proceedings paper,” in CONFERENCE 2016, vol. 9999, F. Editor and S. Editor, Eds. Heidelberg: Springer, pp. 1–13, 2016.
A. A. Al-Qutub, M. A. Habib, and S. A. M. Said, “Development of a Thrust Stand for Micro Gas Turbine Engines,” Journal of Engineering for Gas Turbines and Power, vol. 134, no. 5, 2012. [DOI: 10.1115/1.4005756](https://doi.org/10.1115/1.4005756)
J. L. R. Duarte, M. A. S. Mendes, and R. M. Monaro, “Design and Calibration of a Thrust Stand for Electric Propulsion Systems,” Journal of Aerospace Engineering, vol. 31, no. 5, 2018. [DOI: 10.1061/(ASCE)AS.1943-5525.0000892](https://doi.org/10.1061/(ASCE)AS.1943-5525.0000892)
D. J. Pines and F. Bohorquez, “Challenges facing future micro-air-vehicle development,” J. Aircr., vol. 43, no. 2, pp. 290–305, 2006. [DOI: 10.2514/1.4922](https://doi.org/10.2514/1.4922)
G. M. Hoffmann, H. Huang, & S. L. Waslander, “Precision Flight Control for a Multi-Vehicle Quadrotor Helicopter Testbed,” Control Engineering Practice, vo. 15, no. 7, pp. 803-811, 2007. [DOI: 10.1016/j.conengprac.2006.12.006](https://doi.org/10.1016/j.conengprac.2006.12.006)
W. Johnson, “Helicopter Theory,” Princeton University Press, 2013.
J. G. Leishman, “Principles of Helicopter Aerodynamics,” Cambridge University Press, 2006.
Brandt, J. B., & Selig, M. S. (2011). Propeller Performance Data at Low Reynolds Numbers. AIAA Paper, 2011-1255. [DOI: 10.2514/6.2011-1255](https://doi.org/10.2514/6.2011-1255)
R. W. Deters, G. K. Ananda, and M. S. Selig, Reynolds Number Effects on the Perfor-mance of Small-Scale Propellers. AIAA Paper, 2014. [DOI: 10.2514/6.2014-2151](https://doi.org/10.2514/6.2014-2151)
A. M. Stoll and J. Bevirt, “Design and Testing of a Quadrotor Helicopter,” Journal of Air-craft, vol. 51, no. 4, pp. 1320–1326, 2014. [DOI: 10.2514/1.C032464](https://doi.org/10.2514/1.C032464).
T. Haag, “Design of a thrust stand for high power electric propulsion devices,” in 25th Joint Propulsion Conference, 1989. DOI: 10.1063/1.1142195
J. Novotňák, M. Fiľko, P. Lipovský, and M. Šmelko, “Design of the system for measuring UAV parameters,” Drones, vol. 6, no. 8, p. 213, 2022. DOI: 10.3390/drones6080213
U. Jain, H. Shukla, S. Kapoor, A. Pandey, and H. Nirwal, “Design and analysis of 2-axis rocket motor stand for thrust vectoring,” in AIAA Propulsion and Energy 2020 Forum, 2020. DOI: 10.2514/6.2020-3920
H. Byun and S. Park, “Thrust control loop design for electric-powered UAV,” Int. J. Aeronaut. Space Sci., vol. 19, no. 1, pp. 100–110, 2018. DOI: 10.1007/s42405-018-0003-9
A. D. Ketsdever, B. C. D’Souza, and R. H. Lee, “Thrust stand micromass balance for the direct measurement of specific impulse,” J. Propuls. Power, vol. 24, no. 6, pp. 1376–1381, 2008. DOI: 10.2514/1.35564

Downloads
Published
How to Cite
CITATION COUNT
Issue
Section
License
Copyright (c) 2025 Paramjyot Tiwana

This work is licensed under a Creative Commons Attribution 4.0 International License.