Research Article Mathematical Modelling and Bending Analysis of Beams

Authors

  • Emarti Kumari Department of Mechanical Engineering, MBM University, Jodhpur-342011, Rajasthan, India https://orcid.org/0000-0002-3339-8153
  • Brajesh Choudhary Department of Mechanical Engineering, MBM University, Jodhpur-342011, Rajasthan, India

DOI:

https://doi.org/10.54060/a2zjournals.jmce.62

Keywords:

Euler-Bernoulli beam, cross-sections, finite element method, Hermites shape functions

Abstract

In this communication finite element formulation of Euler-Bernoulli beam is done considering Hermites shape functions and illustrated the calculation of stiffness matrix, mass matrix and force vector in detail. Here, considered the various cross-section of beams such as trapezoidal, rectangular, circular, triangular, etc under various loading and boundary conditions to investigate the effect of transverse deflection, shear force and bending moment with change in cross-section of beams by using finite element method based commercial software ANSYS 18.1. Here, present numerical results are validated with analytical results of beams with different cross-sections, loading and boundary conations.

Downloads

Download data is not yet available.

References

Luongo, F. D’Annibale, and M. Ferretti, “Shear and flexural factors for static analysis of homogenized beam models of planar frames,” Eng. Struct., vol. 228, no. 111440, p. 111440, 2021. https://doi.org/10.1016/j.engstruct.2020.111440.

H. I. Copuroglu and E. Pesman, “Analysis of Flettner Rotor ships in beam waves,” Ocean Eng., vol. 150, pp. 352–362, 2018. https://doi.org/10.1016/j.oceaneng.2018.01.004.

Z. Gao, Q. Gao, and D. Vassalos, “Numerical study of damaged ship flooding in beam seas,” Ocean Eng., vol. 61, pp. 77–87, 2013. https://doi.org/10.1016/j.oceaneng.2012.12.038.

S. Roy and C. K. Kundu, “State of the art review of wind induced vibration and its control on transmission tow-ers,” Structures, vol. 29, pp. 254–264, 2021. https://doi.org/10.1016/j.istruc.2020.11.015.

A. Rahmzadeh and A. Iqbal, “Numerical modelling and analysis of post-tensioned timber beam-column joint,” Eng. Struct., vol. 245, no. 112762, p. 112762, 2021. https://doi.org/10.1016/j.engstruct.2021.112762.

E. Kumari and S. Lal, “Nonlinear bending analysis of trapezoidal panels under thermo-mechanical load,” Forces Mech., vol. 8, p. 100097, 2022. https://doi.org/10.1016/j.finmec.2022.100097.

E. Kumari, “Dynamic response of composite panels under thermo-mechanical loading,” J. Mech. Sci. Technol., vol. 36, no. 8, pp. 3781–3790, 2022. https://doi.org/10.1007/s12206-022-0701-x.

E. Kumari, “Perspective chapter: Dynamic analysis of high-rise buildings using simplified numerical method,” in Chaos Monitoring in Dynamic Systems - Analysis and Applications, IntechOpen, 2024. doi: 10.5772/intechopen.108556.

E. Kumari, “Nonlinear bending analysis of cylindrical panel under thermal load,” International Research Journal on Ad-vanced Science Hub, vol. 3, no. 7, pp. 145–150, 2021. https://doi.org/10.47392/irjash.2021.191.

E. Kumari and M. K. Singha, “Nonlinear response of laminated panels under blast load,” Procedia Eng., vol. 173, pp. 539–546, 2017. https://doi.org/10.1016/j.proeng.2016.12.086.

T. Chandrupatla and A. Belegundu, Introduction to finite elements in engineering. Cambridge University Press, 2021.

J. N. Reddy, “ An introduction to the finite element method (Vol. 3). New York: McGraw-Hill, 2013

K. J. Bathe, “Finite element procedures”. Klaus-Jurgen Bathe, 2006.

R. K. Bansal, “A textbook of strength of materials: (in SI units)” Laxmi Publications, 2010.

jmce 62

Downloads

Published

2024-11-25

How to Cite

[1]
E. Kumari and B. Choudhary, “Research Article Mathematical Modelling and Bending Analysis of Beams”, J. Mech. Constr. Eng., vol. 4, no. 2, pp. 1–12, Nov. 2024.

CITATION COUNT

Issue

Section

Research Article