The Analysis of Mechanical Properties of Ensete and Nettle Hybrid Natural Fiber Reinforced Composite for Automobile Applications

Authors

  • . Mando Doyo Choto Bule Hora University, Ethiopia
  • Jio Dadi Dukale Bule Hora University, Ethiopia image/svg+xml
  • Serawit Kumana, Institute of indigenous Studies, Dilla University, Ethiopia image/svg+xml

DOI:

https://doi.org/10.54060/a2zjournals.jmce.54

Keywords:

Ensete, Nettle, Natural fiber, Lightweight, Fiber orientation, Interior components

Abstract

Mechanical Properties of Hybrid Natural Fiber Reinforced Composite for different Applications is necessary to analysis because recently natural fiber composites are overtaking the place of synthetic fiber composites for many applications. It is an alternative to replace the synthetic fiber for particularly automobile interior application. So improveing the mechanical properties of Ensete and Nettle hybrid fiber by analysis each tested parameters’ have attractive attention in this research. most conventional material used for interior and exterior of automobile like metal, plastics and synthetic fiber are not biodegradable and special metal is heavy, not cost effective and subjected to corrosion, rust, and require painting, maintenance at regular intervals. This research aims to determine how to Ensete and Nettle fibers applied for automobile application. To achieve this objective quantitative data was collected from 48 testing specimen. The fiber reinforced epoxy composite was prepared at constant fiber volume percent of 50% with fiber orientation angles of 0°, (0°and 90°), (90° and 0°) and +45°/-45° measured from horizontal axis. The method of modeling and analysis, that was carried out in this research has been done in ANSYS ACP (pre) 2022R2 Workbench software. for comparing the static structural simulation results with the available material data given by the material manufactured, in case of the used test samples, boundary conditions and material properties. The study found that the changing the volume ratio of the composite material adding the strength of tested parameters like tensile, compression, flexural and impact specimen. Therefore the study had a significant influence on interior automobile and other related application. It can be concluded that Ensete and Nettle hybrid natural fiber reinforced composite can be used in non-structural interior components of automobiles like door panels, dashboards, and inner body skins.

Downloads

Download data is not yet available.

Author Biographies

Jio Dadi Dukale, Bule Hora University, Ethiopia

, Master of Science in Automotive Engineering, Bule Hora University, Ethiopia

 

Serawit Kumana,, Institute of indigenous Studies, Dilla University, Ethiopia

Lecture at Institute of indigenous   studies of Dilla University, Ethiopia

References

S. C. R. Furtado, A. L. Araújo, A. Silva, C. Alves, and A. M. R. Ribeiro, “Natural fibre-reinforced composite parts for automotive applications,” Int. J. Automot. Compos., vol. 1, no. 1, p. 18, 2014, doi: 10.1504/ijautoc.2014.064112.

M. R. Sanjay, G. R. Arpitha, L. L. Naik, K. Gopalakrishna, and B. Yogesha, “Applications of Natural Fibers and Its Composites: An Overview,” Nat. Resour., vol. 07, no. 03, pp. 108–114, 2016, doi: 10.4236/nr.2016.73011.

L. A. Elseify, Manufacturing Automotive Components from Sustainable Natural Fiber Composites SpringerBriefs in Materials. 2021.

L. Prabhu et al., “A review on natural fiber reinforced hybrid composites: Chemical treatments, manufacturing methods and potential applications,” Mater. Today Proc., vol. 45, pp. 8080–8085, 2021, doi: 10.1016/j.matpr.2021.01.280.

M. K. Huda and I. Widiastuti, “Natural Fiber Reinforced Polymer in Automotive Application: A Systematic Literature Review,” IOP Conf. Ser. Earth Environ. Sci., vol. 1808, no. 1, 2021, doi: 10.1088/1742-6596/1808/1/012015.

S. Rosenthal, F. Maaß, M. Kamaliev, M. Hahn, S. Gies, and A. E. Tekkaya, “Lightweight in Automotive Components by Forming Technology,” Automot. Innov., vol. 3, no. 3, pp. 195–209, 2020, doi: 10.1007/s42154-020-00103-3.

T. A. Negawo, Y. Polat, F. N. Buyuknalcaci, A. Kilic, N. Saba, and M. Jawaid, “Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites,” Compos. Struct., vol. 207, pp. 589–597, 2019, doi: 10.1016/j.compstruct.2018.09.043.

P. J. Herrera-Franco and A. Valadez-González, “A study of the mechanical properties of short natural-fiber reinforced composites,” Compos. Part B Eng., vol. 36, no. 8, pp. 597–608, 2005, doi: 10.1016/j.compositesb.2005.04.001.

F. M. Al-Oqla, S. M. Sapuan, M. R. Ishak, and A. A. Nuraini, “A decision-making model for selecting the most appropriate natural fiber - Polypropylene-based composites for automotive applications,” J. Compos. Mater., vol. 50, no. 4, pp. 543–556, 2016, doi: 10.1177/0021998315577233.

G. Rajamurugan, “Natural Fiber Reinforced Polymer in Automotive Application : A Systematic Literature Review Natural Fiber Reinforced Polymer in Automotive Application : A Systematic Literature Review,” doi: 10.1088/1742-6596/1808/1/012015.

O. Akampumuza, P. M. Wambua, A. Ahmed, W. Li, and X. Qin, “Review of the Applications of Biocomposites in the Automotive Industry,” pp. 1–17, 2016, doi: 10.1002/pc.

S. Helaili, M. Chafra, and Y. Chevalier, “Natural fiber alfa/epoxy randomly reinforced composite mechanical properties identification,” Structures, vol. 34, no. August, pp. 542–549, 2021, doi: 10.1016/j.istruc.2021.07.095.

N. Fiber, P. Composites, N. Fibers, and B. Characteristics, “What are Natural Fiber Composites ? Basics , Applications , and Future Potentials.”

B. Seifu, B. Singh, J. Moera Gutu, and D. Legesse, “Mechanical behaviours of hybrid ensete/sisal fiber, reinforced polyethylene composite materials for injection moulding,” SN Appl. Sci., vol. 2, no. 5, pp. 1–25, 2020, doi: 10.1007/s42452-020-2679-2.

L. M. Karlsson and A. L. Dalbato, “Enset research in Ethiopia,” no. February, 2016, [Online]. Available: https://www.researchgate.net/publication/339290751.

U. Nirmal, J. Hashim, and M. M. H. Ahmad, “Author ’ s Accepted Manuscript,” Tribiology Int., 2014, doi: 10.1016/j.triboint.2014.11.003.

O. T. Adesina, T. Jamiru, E. R. Sadiku, O. F. Ogunbiyi, and L. W. Beneke, “Mechanical evaluation of hybrid natural fibre–reinforced polymeric composites for automotive bumper beam: a review,” Int. J. Adv. Manuf. Technol., vol. 103, no. 5–8, pp. 1781–1797, 2019, doi: 10.1007/s00170-019-03638-w.

K. Rohit and S. Dixit, “A review - future aspect of natural fiber reinforced composite,” Polym. from Renew. Resour., vol. 7, no. 2, pp. 43–60, 2016, doi: 10.1177/204124791600700202.

S. S. R. Raj, J. E. R. Dhas, and C. P. Jesuthanam, “Challenges on machining characteristics of natural fiber-reinforced composites – A review,” J. Reinf. Plast. Compos., vol. 40, no. 1–2, pp. 41–69, 2021, doi: 10.1177/0731684420940773.

N. Feleke and W. Tekalign, “The Neglected Traditional Enset ( Ensete ventricosum ) Crop Landraces for the Sustainable Livelihood of the Local People in,” vol. 2022, 2022.

M. Müller, P. Valášek, and A. Ruggiero, “Strength Characteristics of Untreated Short-fibre Composites from the Plant Ensete ventricosum,” vol. 12, no. 1, pp. 255–269, 2017.

C. Mizera, D. Herak, P. Hrabe, and M. Muller, “Mechanical Behavior of Ensete ventricosum Fiber Under Tension Loading Mechanical Behavior of Ensete ventricosum Fiber Under Tension,” J. Nat. Fibers, vol. 00, no. 00, pp. 1–10, 2016, doi: 10.1080/15440478.2016.1206500.

J. Harwood and G. Edom, “Nettle Fibre : Its Prospects , Uses and Problems in Historical Perspective,” vol. 43, no. May, pp. 107–119, 2012, doi: 10.1179/174329512X13284471321244.

C. R. Vogl and A. Hartl, “Production and processing of organically grown ® ber nettle ( Urtica dioica L .) and its potential use in the natural textile industry : A review,” no. Table 1.

M. J. Mochane, T. C. Mokhena, T. H. Mokhothu, A. Mtibe, E. R. Sadiku, and S. S. Ray, “Recent progress on natural fiber hybrid composites for advanced applications : A review,” vol. 13, no. 2, pp. 159–198, 2019.

D. K. K. Cavalcanti, M. D. Banea, J. S. S. Neto, R. A. A. Lima, L. F. M. da Silva, and R. J. C. Carbas, “Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites,” Compos. Part B Eng., vol. 175, p. 107149, 2019, doi: 10.1016/j.compositesb.2019.107149.

L. Prasad, A. Kumain, R. V. Patel, A. Yadav, and J. Winczek, “Physical and Mechanical Behavior of Hemp and Nettle Fiber-Reinforced Polyester Resin-based Hybrid Composites Physical and Mechanical Behavior of Hemp and Nettle Fiber-Reinforced Polyester Resin-based Hybrid Composites Lalta Prasad , Ashish Kumain , Raj Va,” J. Nat. Fibers, vol. 00, no. 00, pp. 1–16, 2020, doi: 10.1080/15440478.2020.1821284.

R. Ramasubbu and S. Madasamy, “Fabrication of Automobile Component Using Hybrid Natural Fiber Reinforced Polymer Composite Fabrication of Automobile Component Using Hybrid Natural Fiber,” J. Nat. Fibers, vol. 00, no. 00, pp. 1–11, 2020, doi: 10.1080/15440478.2020.1761927.

M. S. Fogorasi and I. Barbu, “The potential of natural fibres for automotive sector - Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 252, no. 1, 2017, doi: 10.1088/1757-899X/252/1/012044.

R. Pandey, S. Jose, and M. K. Sinha, “Fiber Extraction and Characterization from Typha Domingensis,” J. Nat. Fibers, vol. 00, no. 00, pp. 1–12, 2020, doi: 10.1080/15440478.2020.1821285.

L. Bacci, S. Di Lonardo, L. Albanese, G. Mastromei, and B. Perito, “Effect of different extraction methods on fiber quality of nettle (Urtica dioica L.),” Text. Res. J., vol. 81, no. 8, pp. 827–837, 2011, doi: 10.1177/0040517510391698.

K. P. Kumar and A. S. J. Sekaran, “Some natural fibers used in polymer composites and their extraction processes: A review,” J. Reinf. Plast. Compos., vol. 33, no. 20, pp. 1879–1892, 2014, doi: 10.1177/0731684414548612.

G. Rajeshkumar, V. Hariharan, T. P. Sathishkumar, V. Fiore, and T. Scalici, “Synergistic effect of fiber content and length on mechanical and water absorption behaviors of Phoenix sp. fiber-reinforced epoxy composites,” J. Ind. Text., vol. 47, no. 2, pp. 211–232, 2017, doi: 10.1177/1528083716639063.

S. Sathish et al., “Materials Today : Proceedings A review of natural fiber composites : Extraction methods , chemical treatments and applications,” Mater. Today Proc., vol. 45, pp. 8017–8023, 2021, doi: 10.1016/j.matpr.2020.12.1105.

M. Jawaid Anish Khan Editors, Composites Science and Technology Vegetable Fiber Composites and their Technological Applications. .

A. Karimah et al., “A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations,” J. Mater. Res. Technol., vol. 13, pp. 2442–2458, 2021, doi: 10.1016/j.jmrt.2021.06.014.

M. Y. Khalid et al., “Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites,” Coatings, vol. 11, no. 3, pp. 1–18, 2021, doi: 10.3390/coatings11030293.

R. Latif, S. Wakeel, and N. Z. Khan, “Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites : A review,” 2018, doi: 10.1177/0731684418802022.

R. Sepe, F. Bollino, L. Boccarusso, and F. Caputo, “Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites,” Compos. Part B Eng., vol. 133, pp. 210–217, 2018, doi: 10.1016/j.compositesb.2017.09.030.

M. Sood and G. Dwivedi, “Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review,” Egypt. J. Pet., vol. 27, no. 4, pp. 775–783, 2018, doi: 10.1016/j.ejpe.2017.11.005.

M. R. M. Asyraf, M. Rafidah, A. Azrina, and M. R. Razman, “Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: a comprehensive review on chemical treatments,” Cellulose, vol. 28, no. 5, pp. 2675–2695, 2021, doi: 10.1007/s10570-021-03710-3.

B. Koohestani, A. K. Darban, P. Mokhtari, E. Yilmaz, and E. Darezereshki, “Comparison of different natural fiber treatments: a literature review,” Int. J. Environ. Sci. Technol., vol. 16, no. 1, pp. 629–642, 2019, doi: 10.1007/s13762-018-1890-9.

J. Köbler, M. Schneider, F. Ospald, H. Andrä, and R. Müller, “Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts,” Comput. Mech., vol. 61, no. 6, pp. 729–750, 2018, doi: 10.1007/s00466-017-1478-0.

U. Sharan, A. Dharkar, M. Dhamarikar, A. Choudhary, and D. Wasnik, “Materials Today : Proceedings Study on the effects of fiber orientation on the mechanical properties of natural fiber reinforced epoxy composite by finite element method,” Mater. Today Proc., vol. 45, pp. 7885–7893, 2021, doi: 10.1016/j.matpr.2020.12.614.

I. E. Bican, M. O. Kaman, and S. Erdem, “Effect of fiber orientation on interfacial fracture toughness for adhesively bonded composite plates,” J. Mech. Sci. Technol., vol. 34, no. 2, pp. 757–764, 2020, doi: 10.1007/s12206-020-0123-6.

A. B. Walte, K. Bhole, and J. Gholave, “ScienceDirect Mechanical Characterization Of Coir Fiber Reinforced Composite,” Mater. Today Proc., vol. 24, pp. 557–566, 2020, doi: 10.1016/j.matpr.2020.04.309.

W. Mechanics, F. Faculty, and R. H. White, “Coir Fiber Reinforced Polypropylene Composite Panel for Automotive Interior Applications Piyawade Bauchongkol,” vol. 12, no. 7, pp. 919–926, 2011. doi: 10.1007/s12221-011-0919-1.

S. Madnasri, G. Astika, P. Marwoto, S. Madnasri, G. Astika, and P. Marwoto, “The Effects of Natural Fiber Orientations on the Mechanical Properties of Brake Composites The Effects of Natural Fiber Orientations on the Mechanical Properties of Brake Composites,” J. Nat. Fibers, vol. 00, no. 00, pp. 1–12, 2020. doi: 10.1080/15440478.2020.1838989.

M. Ramesh, K. Palanikumar, and K. H. Reddy, “Influence of fiber orientation and fiber content on properties of sisal-jute-glass fiber-reinforced polyester composites,” vol. 42968, pp. 1–9, 2016. doi: 10.1002/app.42968.

P. P. Das, V. Chaudhary, and S. J. Motha, “Fabrication and Characterization of Natural Fibre Reinforced Polymer Composites : A Review,” pp. 119–123, 2020.

S. Kumar, S. Khan, R. Kumar, and J. Karloopia, “Materials Today : Proceedings Fabrication and evaluation of mechanical properties of polymer matrix composite using nano fibers as a reinforcement,” Mater. Today Proc., no. xxxx, 2021. doi: 10.1016/j.matpr.2021.02.488.

T. K. Mulenga and A. U. Ude, “Techniques for Modelling and Optimizing the Mechanical Properties of Natural Fiber Composites : A Review,” 2021.

S. Das, D. N. Mahato, and M. K. Paswan, “Materials Today : Proceedings Differential fabrication and characterization of natural fiber composite laminates – An investigative approach,” Mater. Today Proc., no. xxxx, 2020. doi: 10.1016/j.matpr.2020.02.212.

K. Balasubramanian, M. T. H. Sultan, and N. Rajeswari, 4. Manufacturing techniques of composites for aerospace applications. Elsevier Ltd, 2018.

M. Asim, M. Jawaid, N. Saba, M. Nasir, M. Thariq, and H. Sultan, 1. Processing of hybrid polymer composites—a review. Elsevier Ltd, 2017.

A. C. David and A. L. Naidu, “A Review on Manufacturing Techniques and Chemical Properties of Natural Composite Materials,” no. 4, 2017.

M. Jawaid, S. M. Sapuan, and O. Y. Alotman, “Green Biocomposites Manufacturing and Properties,” p. 409, 2017. doi: 10.1007/978-3-319-46610-1.

O. Adekomaya, T. Jamiru, R. Sadiku, and Z. Huan, “Negative impact from the application of natural fibers,” J. Clean. Prod., vol. 143, pp. 843–846, 2017. doi: 10.1016/j.jclepro.2016.12.037.

S. Patil, “Carbon Composites For Automotive,” no. May, 2021.

Z. Alemayehu, R. B. Nallamothu, M. Liben, S. K. Nallamothu, and A. K. Nallamothu, “Experimental investigation on characteristics of sisal fiber as composite material for light vehicle body applications,” Mater. Today Proc., vol. 38, no. xxxx, pp. 2439–2444, 2020. doi: 10.1016/j.matpr.2020.07.386.

N. Karthi, K. Kumaresan, S. Sathish, S. Gokulkumar, L. Prabhu, and N. Vigneshkumar, “An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas,” Mater. Today Proc., vol. 27, no. xxxx, pp. 2828–2834, 2019. doi: 10.1016/j.matpr.2020.01.011.

N. Ramli et al., “Natural fiber for green technology in automotive industry: A brief review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 368, no. 1, 2018. doi: 10.1088/1757-899X/368/1/012012.

R. Kumar, M. I. Ul Haq, A. Raina, and A. Anand, “Industrial applications of natural fibre-reinforced polymer composites–challenges and opportunities,” Int. J. Sustain. Eng., vol. 12, no. 3, pp. 212–220, 2019. doi: 10.1080/19397038.2018.1538267.

R. Malkapuram, V. Kumar, and Y. S. Negi, “Journal of Reinforced Plastics and Recent Development in Natural Fiber,” 2009. doi: 10.1177/0731684407087759.

D. Getu, R. Babu, M. Masresha, and S. Kishan, “Materials Today : Proceedings Production and characterization of bamboo and sisal fiber reinforced hybrid composite for interior automotive body application,” Mater. Today Proc., no. xxxx, 2020. doi: 10.1016/j.matpr.2020.08.780.

M. A. Azman et al., “Natural fiber reinforced composite material for product design: A short review,” Polymers (Basel)., vol. 13, no. 12, 2021. doi: 10.3390/polym13121917.

A. Shahzad, “Journal of Composite Materials,” no. August 2011, 2012. doi: 10.1177/0021998311413623.

F. Ahmad, H. S. Choi, and M. K. Park, “A Review : Natural Fiber Composites Selection in View of Mechanical , Light Weight , and Economic Properties,” pp. 1–15, 2014. doi: 10.1002/mame.201400089.

M. Li et al., “Recent advancements of plant-based natural fiber–reinforced composites and their applications,” Compos. Part B Eng., vol. 200, 2020. doi: 10.1016/j.compositesb.2020.108254.

C. Series, “Potential of Using Natural Fiber for Building Acoustic Absorber : A Review Potential of Using Natural Fiber for Building Acoustic Absorber : A Review,” 2019. doi: 10.1088/1742-6596/1262/1/012017.

R. E. Nettleton, R. E. Nettleton, D. Jou, and G. Lebon, “Study of stinging nettle ( urtica dioica l .) Fibers reinforced green composite materials : a review Study of stinging nettle ( urtica dioica l .) Fibers reinforced green composite materials : a review,” 2017. doi: 10.1088/1757-899X/201/1/012001.

R. Ramasubbu and S. Madasamy, “Fabrication of Automobile Component Using Hybrid Natural Fiber Reinforced Polymer Composite,” J. Nat. Fibers, vol. 19, no. 2, pp. 736–746, 2022. doi: 10.1080/15440478.2020.1761927.

“WP 310 Materials testing, 50kN The illustration shows WP 310 together with the accessory WP 310.05.”

T. Description, “WP 310 Hydraulic Universal Material Tester , 50kN,” vol. 49, no. 40, pp. 49–51, 2013.

M. Balasubramanian, T. G. Loganathan, and R. Srimath, “An overview : characterization of natural fi ber reinforced hybrid composites,” vol. 3, no. September 2021, pp. 418–444, 2023. doi: 10.1108/WJE-07-2021-0409.

B. Asma, L. Hamdi, B. Ali, and M. Youcef, “Flexural Mechanical Properties of Natural Fibre Reinforced Polymer Composites - A Statistical Investigation,” vol. 21, no. 10, pp. 2321–2337, 2020. doi: 10.1007/s12221-020-1299-1.

N. K. Faheed, Q. A. Hamad, and J. K. Oleiwi, “Tensile and Stress Analysis of Hybrid Composite Prosthetic Socket Reinforced with Natural Fibers,” 2022. doi: 10.32604/jrm.2022.017573.

P. D. Barsanescu and A. M. Comanici, “von Mises hypothesis revised,” Acta Mech., vol. 228, no. 2, pp. 433–446, 2017. doi: 10.1007/s00707-016-1706-2.

“Formula for shear modulus calculation.”

D. Xu, C. Cerbu, H. Wang, and I. C. Rosca, “Analysis of the hybrid composite materials reinforced with natural fibers considering digital image correlation (DIC) measurements,” Mech. Mater., vol. 135, no. May, pp. 46–56, 2019. doi: 10.1016/j.mechmat.2019.05.001.

A. K. Dey, “Poisson ’ s Ratio-Formula , Significance , Equation , Example ( With PDF ),” pp. 1–5, 2020.

Y. K. Kim, Natural fibre composites (NFCs) for construction and automotive industries, no. 2000. Woodhead Publishing Limited, 2012.

A. Gholampour and T. Ozbakkaloglu, A review of natural fiber composites: properties, modification and processing techniques, characterization, applications, vol. 55, no. 3. Springer US, 2020.

M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, Characterization and properties of natural fiber polymer composites: A comprehensive review, vol. 172. Elsevier B.V., 2018.

S. Vigneshwaran et al., “Recent advancement in the natural fiber polymer composites: A comprehensive review,” J. Clean. Prod., vol. 277, p. 124109, 2020. doi: 10.1016/j.jclepro.2020.124109.

S. Budhe, S. de Barros, and M. D. Banea, “Theoretical assessment of the elastic modulus of natural fiber-based intra-ply hybrid composites,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 6, pp. 1–10, 2019. doi: 10.1007/s40430-019-1766-z.

H. Flax, B. Fiber, R. Epoxy, C. Fan, and B. Application, “Addis Ababa Institute of Technology School of Graduate Studies Development and Characterization of Hybrid Flax -Banana Fiber Acknowledgment.”

H. Patil and P. V. Jeyakarthikeyan, “Mesh convergence study and estimation of discretization error of hub in clutch disc with integration of ANSYS,” IOP Conf. Ser. Mater. Sci. Eng., vol. 402, no. 1, 2018. doi: 10.1088/1757-899X/402/1/012065.

S. M. Oskui, H. C. Bhakta, G. Diamante, H. Liu, D. Schlenk, and W. H. Grover, “Measuring the mass, volume, and density of microgram-sized objects in fluid,” PLoS One, vol. 12, no. 4, pp. 1–17, 2017. doi: 10.1371/journal.pone.0174068.

B. Numbers, C. Updated, C. Note, and D. Wip, “Basic Numbers and Calculations for Composites Definitions.”

R. M. Jones, “Introduction to Composite Materials,” Mech. Compos. Mater., pp. 1–53, 2018. doi: 10.1201/9781498711067-1.

The World material, “Density Of Metals, All Common Metal Density Chart & Table,” World Mater., 2021. [Online]. Available: https://www.theworldmaterial.com/density-of-metals/.

A. B. Balaji, C. Rudd, and X. Liu, “Recycled Carbon Fibers (rCF) in Automobiles: Towards Circular Economy,” Mater. Circ. Econ., vol. 2, no. 1, 2020. doi: 10.1007/s42824-020-00004-0.

F. Prezas, L. Aida, and A. P. Fonseca, “Improving the Compatibility and Mechanical Properties of Natural Fibers / Green Polyethylene Biocomposites Produced by Rotational Molding,” J. Polym. Environ., no. 0123456789, 2020. doi: 10.1007/s10924-020-01667-1.

“Facture Toughness Investigation of Chopped Sisal Fiber Reinforced Epoxy Resin Composite Yonas Tsegaye,” 2017.

K. Greta, K. Haag, and J. Müssig, “Materials & Design Biomimetic approaches towards lightweight composite structures for car interior parts,” Mater. Des., vol. 212, p. 110281, 2021. doi: 10.1016/j.matdes.2021.110281.

S. Bundele and R. S. Bindu, “Automotive Door Design & Structural Optimization of Front Door for Commercial Vehicle with ULSAB Concept for Cost and Weight Reduction,” Glob. J. Res. Eng. Automot. Eng., vol. 12, no. 2, 2012. [Online]. Available: https://globaljournals.org/GJRE_Volume12/4-Automotive-Door-Design-and-Structural.pdf.

A. Yudianto, S. Ghafari, P. Huet, and M. Wakid, “Evaluation of the Temperature Distribution and Structural Deformation of the Car Dashboard Subjected to Direct Sunlight,” J. Phys. Conf. Ser., vol. 1273, no. 1, 2019. doi: 10.1088/1742-6596/1273/1/012076.

jmce 54

Downloads

Published

2024-04-25

How to Cite

[1]
. M. D. Choto, J. D. Dukale, and Serawit Kumana, “The Analysis of Mechanical Properties of Ensete and Nettle Hybrid Natural Fiber Reinforced Composite for Automobile Applications”, J. Mech. Constr. Eng., vol. 4, no. 1, pp. 1–26, Apr. 2024.

CITATION COUNT

Issue

Section

Research Article