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  Abstract 

In this communication finite element formulation of Euler-Bernoulli beam is done con-
sidering Hermites shape functions and illustrated the calculation of stiffness matrix, 
mass matrix and force vector in detail. Here, considered the various cross-section of 
beams such as trapezoidal, rectangular, circular, triangular, etc under various loading 
and boundary conditions to investigate the effect of transverse deflection, shear force 
and bending moment with change in cross-section of beams by using finite element 
method based commercial software ANSYS 18.1. Here, present numerical results are 
validated with analytical results of beams with different cross-sections, loading and 
boundary conations.  
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1. Introduction  

Beam and Frame Structures: beams are slender members (L >> d for circular cross-section and L >> width or height for the 

case of rectangular cross-section) that are used for supporting transverse load; axial and shear load in columns. Long hori-

zontal members are used buildings, bridges, helicopter blades and shafts supported in bearings. Whereas frame structures 

are complex structures made by rigidly connected members used in spacecraft, aircraft, automobile and defense structures. 
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    Luongo et al. [1] modeled a one-dimensional beam that will equivalent to two-dimensional space structure such as pla-

nar frames and performed static analysis. Copuroglu and Pesman [2] studied the effect of flettner rotors on rolling motion of 

ships through computational fluid dynamics. Gao et al. [3] developed an integrated numerical method using a seakeeping 

solver and NS solver based on potential flow meter and VOF model; respectively to study the damaged ship behavior. Roy 

and Kundu [4] reviewed wind induced vibration and its control in power transmission lines. Authors conducted a comparative 

study based on the performance of various dampers (i.e. VED, TMS, MR and friction damper) to reduce structural vibrations.      

    Rahmzadeh and Iqbal [5] examined the responses of post-tensioned laminated veneer lumber beam-column subassem-

blies by employing a three-dimensional finite element method. Recently, static and dynamic characteristics of flat and curved 

panels have been studied [6-10] considering different loading and boundary conditions. In this paper authors developed 

mathematical model of beam using Euler-Bernoulli beam theory and compared the numerical results of ANSYS 18.1 with an-

alytical results of Bansal [14].   

2. Finite Element Formulation 

2.1. Euler-Bernoulli beam element 

A schematic representation of Euler-Bernoulli beam with its coordinate un-deformed and deformed configurations is shown 

in Figure 1 and Figure 2; respectively. Assumptions of Euler-Bernoulli beam is as follows: (a) beam is thin (h/L << 1); and h/L < 

0.05 for homogeneous isotropic beam; (b) normal to the neutral axis remains (for thin beam) normal after deformation.      

 

                               
Figure 1. 

 

 

 

(a) (b) 
           Figure 2. (a) Deformed beam (b) shear strains 
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                                yy zz xx  = = − ;  0xy yz zx  = = =                                 (3) 

Stress:                                  

2

2xx xx

d v
E Ey

dx
 = = −                                       (4) 

yy, zz  0; approximately zero as its magnitude is very small as compared to xx. 

Bending moment: systematically expressed in Figure 3.  

                  z xx

A

M y dA= −                    (5)       

By substituting equation (4) into equation (5) we get equation (5) will be 

written as: 

                  

2

2z zz

d v
M EI

dx
=                      (6) 

                   

 

 

 

 

 

             Figure 3. Bending moment 

Systematic representation of forces and moment is shown in Figure 4; and Equilibrium equations are written as: 

 

Figure 4. Systematic representation of forces and moment 

By resolving forces:  

    0 0y y y yF S S S q x=  + − +  =                                   (7a) 

    0
ydS

q
dx

+ =                                                       (7b) 

                ( )0 0 . 0
2

z z z z y y

x
M M M M S S x q x


=  + − + +  +  =             (8) 

Dividing by x both sides and limit x →0; get equation (9): 

                                      0z
y

dM
S

dx
+ =                                              (9) 

Shear force may be expressed as: 

                              
2

2y zz

d d v
S EI

dx dx

 
= −  

 
                                       (10) 

By substituting equation (10) into equation (7b), we get: 

                          
2 2

2 2
0zz

d d v
EI q

dx dx

 
− + = 

 
                                       (11) 

For finite element formulation, equation (11) is taken weak form then primary variable are: v, 
dv

dx
 as shown in Figure 5.  
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Figure 5. Finite element taken weak form then primary variable 

 

2.2. Total potential energy function 
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By substituting values of shear force and bending moment at node 1 and 2 such as: Sy1 = S1, Sy2 = S2, Mz1 = M1, Mz2 = S2, 

1

1

dv
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

 
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 
; 2

2

dv

dx


 
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 
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2
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l n nl
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i i

d v
I EI dx vqdx S v M

dx

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= − − − 

 
                                  (13) 

Interpolation polynomial which satisfies the differentiability requirement within element and compatibility conditions as pee 

order of partial differential governing equations as expressed by Chandrupatla and Belegunda [11]:  

  
2 3

0 1 2 3v a a x a x a x= + + +                                            (14a) 

At node 1, x = 0                          v1 = a0          and 1 = a1 

and at node 2, x = L                   
2 3

2 0 1 2 3v v L a L a L= + + + ;   
2

2 1 2 32 3a L a L = + +                   (14b) 

Thus, 
0 1a v= ; 

1 1a = ; 1 1 2 2
2 2 2

3 2 3v v
a

L L L L

 
= − − + − ; and 1 1 2 2

3 3 2 3 2

2 2v v
a

L L L L

 
= + − +                    (14c) 

Polynomial may be written as:  

      

1

1
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 
  

                                    (15) 

Here, H1, H2, H3, H4 are the Hermits interpolation functions may be described as follows:  

2 3
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Integral function may be written as given in equation (16) from equation (13): 

   

1 1

2 2
1 1

2 2 0
2 20

2 2

1

2

Tl
l

T

zz

v S

Md v d v
I EI dx v qdx

v Sdx dx

M





−  
  

−      
= − −      

      
    

                                 (16) 

Here,     
22 2 22

31 2 4

2 2 2 2 2

e ed Hd H d H d Hd v
d B d

dx dx dx dx dx

 
= = 
 

                                          (17) 

v1 

 

L 

x 

v2 

 

1 2 



B. Choudhary, E. Kumari 
 

 

ISSN (Online) : 2583-0619 5 
Journal of Mechanical and Construction Engineering 

(JMCE) 
A2Z Journals 

 

 

By substituting the approximation of ‘v’ in integral function equation (16); we get: 

                

1

1

20 0

2

1

2

l l
T T TT Te e e e
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S

M
I d EI B B dx d d H qdx d

S

M

− 
 

  − 
= − −   

   
  

                            (18a) 

Or               
1

2

T T T
e e e e e e e

ex inI d K d d F d F = − − 
                                        (18b) 

 

For equilibrium of the element: I = 0 
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                        (19) 

Here,    
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Here, equation (19) is solved for the bending analysis of beam structures through ANSYS APDL considering linear element.  

Dynamic analysis: using equation (14), velocity components are written as described by [12-13]:  

                                   ( ) ev x H d=                                              (20) 

Kinetic energy is:                          21

2
V

T v dV=                                               (21) 

Here, rotational kinetic energy is neglected. 
Equation (21) is re-written as equation (22) for the one dimensional problem such as beam/ rod.  

                                      
0

1

2

L
TT v v AdX=                                         (22) 

By substituting the velocity from equation (20) to equation (22), we get equation (23): 

                                  
0

1

2

TL Te eT d H H d AdX=                                 (23a) 

             
1

2

T
e e eT d M d =                                               (23b) 

Here, element level mass matrix    
0

L
TeM H H AdX  =    

Where, 

2 2

2 2
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22 4 13 3
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13 3 22 4

e

L L

L L L LAL
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L L

L L L L



− 
 

−
   =   −
 
− − − 

 

For the dynamic analysis equations of motion is expressed by Hamilton’s principle: 

              ( )
2

1

0

t
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t
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Here, T is a first variation in kinetic energy; V is a first variation in potential energy of conservative force fields; W is the 

virtual work of non-conservative force fields.  

Derivative of equation (23b) is expresses as: 

             
1 1

2 2

T T T
e e e e e e e e eT d M d d M d d M d        = + =     

                  (25) 

Equation (19) may be expressed as equation (26): 

            
T T T

e e e e e e e

ex in NCI d K d d F d F V W      = − − = − 
                      (26) 

Therefore, equation (24) might be re-written as equation (27): 

                            
2

1

0

t
T T T e e

e e e e e ex ine e

t

d M d d K d d F F dt    − + + =
                        (27) 

                    
2

1

0

t
T e e

e e e ex ine e

t

d M d K d F F dt + − − =                              (28a) 

Thus, the governing equation of motion will be written as:  

                                 e e

e e ex ine e
M d K d F F+ = +                                      (28b) 

     Inertial force                       Restoring force      External Force 

3. Results and Discussion 

In this work numerical work has been done using ANSYS software. First some basic analysis of different cross-section beams 

with point load and UDL has been done on cantilever and simply supported beam. Results of these analysis validated with 

analytical solutions. Further analysis of trapezoidal cantilever beam has been done using STRUCTURAL module of ANSYS 18.1 

workbench. Geometry has been created in design modular and meshing done in ANSYS workbench’s meshing tool. 

3.1. Bending analysis and validations 

Case 1: Square cross-section cantilever (CF) beam under point load at the tip of beam as shown in Figure 6; made of isotropic 

material with following material properties:  

Young’s modulas: E = 200000 MPa; Density:  = 7850 kg/m3; 

Tensile yield strength: t = 250 MPa; Poission’s ratio:  = 0.3 

                   

Figure 6. Cantilever beam with point load at tip of beam 

 
An analytically results are calculated as follows [14]:  

Tip deflection of beam (for cantilever having point load) 
EI

PL

3

3

=  = 16 mm 

L = 1000 mm 

P=5KN 
50 mm 
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b 

d 

Here, 
12

3bd
I =  (for rectangular cross-section) = 520833.33 mm4; so, at L = 1000 mm, E = 200 GPa and P = 5000 N. 

At L/2 i.e. x = 500 mm, from Maxwell’s reciprocal theorem.  

/2 : /2 /2 (distance between point where load applied and the point where deflection needed)L L L  = +   

Deflection at mid-span of beam ∆L/2 = 5 mm; shear stress  
P A y

I b

 
=


 = 0 N/mm2; bending stress   = 

I

yM max
= 

240 N/mm2. 

    Here, shear force P = 5000 N, bending moment Mmax = 5×106 N-mm, cross-section area A = 2500 mm2, distance from 

natural axis y = 0, width of beam b = 50 mm, area moment of inertia of beam I = 520833.33 mm4, ymax = 25 mm.  

Firstly, validation study of cantilever (CF) beam with square cross-section (50 mm×50 mm) having length L = 1000 mm sub-

jected the tip load (P = 5000 N) carried out and compared the numerical results of ANSYS 18.1 Workbench (considering 1D 

three node quadratic element, with 69 elements and 139 nodes) with analytical results of deflection (
EI

PL

3

3

= ), shear force   

and bending moment are as given in Table 1. It is found that the numerical results have very good convergence with analyti-

cal results with percentage of error 0.18 % for a case of maximum deflection at the tip of beam (x = L); and percentage of 

error is for the case of shear force and bending moment as given in Table 1. 

Table 1. Comparison of analytical results with numerical results square cross-section cantilever beam under the tip load (q = 
5 KN). 

 Method Max. Min. at x = 0 at x = L at x = L/2 

Deflection (mm) Analytical  16 0 0 16 5 

Present (FEM) 16.03 0 0 16.03 5.01 

Shear force (N) Analytical  5000 5000 5000 5000 5000 

Present (FEM) 5000 5000 5000 5000 5000 

Bending moment 
(N-mm) 

Analytical  5×106 0 0 5×106 2.5×106 

Present (FEM) 5×106 1.40×10-7 1.40×10-7 5×106 2.5×106 

 

    Case 2: Next, Various cross-sections such as rectangular, triangular, circular, and trapezoidal of beam are considered 

here for the static analysis of beams and presented the area moment of inertia and maximum deflection of these beams in 

Table 2. Moreover, the bending moment and shear force of beams having various cross-sections is evaluated analytically and 

numerical, and compared these results as given in Table 3. Analytically results of beams having different cross-sections: 

bending moment and shear force will be same for all cross-section: 

Table 2. Various cross-sections of beams such as rectangular, triangular, circular, and trapezoidal with its dimension, 
cross-section area, area moment of inertia and maximum deflection [14].   

Shape of 
Cross-section of 

beam 
Cross-sections 

Dimensions with 
cross-section area 

Area moment of inertia 
Maximum deflec-
tion from natural 

axis 

Rectangular  b = 100 mm  

d =25 mm  I =
12

3bd
 

 

ymax = d/2 
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A = 2500 mm2 I = 130208.33 mm4 

Triangular 

     

b = 100 mm  

h =50 mm 

A = 2500 mm2 

I =
36

3bh
 

I = 347222.22 mm4 

 

ymax = h/3 

Circular 

        

r = 28.21 mm 

A = 2500 mm2 I =
64

4d
  

I = 497395.92 mm4 

 

ymax = d/2 

Trapezoidal 

 

a = 40 mm 

b = 60 mm 

h = 50 mm  

A = 2500 mm2 

I =
( )

( )ba

babah

+

++

36

4 223

  

I = 513888.88 mm4 

 

ymax =
( )
( )ba

bah

+

+

3

2
 

ymax = 23.33 mm 

 

Table 3. Validation for same boundary condition and loading condition with different cross-section, keeping the area same 
for comparison. 

Cross-section 
Parameters 

 Square Rectangular Triangle Circle Trapezium 

Area (mm2) - 2500 2500 2500 2500 2500 

Deflection (mm) 
Analytical 16 64 24 16.75 16.22 

FEM 16.03 64.03 24.03 16.82 16.242 

Bending Stress 
(N/mm2) 

Analytical 240 480 239.90 283.57 226.99 

FEM 240 480 - 284.16 - 

Shear stress (N/mm2) 
Analytical 0 0 0 0 0 

FEM 0 0 - 0 - 

 

    From above results we can say that when area of the all cross- section kept constant then square cross-section per-

formed well and have minimum deflection of 16 mm and trapezium cross-section have lowest bending stress among them, 

although orientation of the cross-section also affects the results. All results are obtained in ANSYS assuming line body analy-

sis of beam. Results obtained from FEM analysis and analytical are almost same which shows the effectiveness of the FEM 

analysis. Further validations are done for different loading and boundary condition. 

3.2. Numerical Results for Cantilever Beam under Point Load 

Next, considered the various cross-section of isotropic ( = 0.3) cantilever beam (CF) having length (L = 1000 mm) such as (a) 

square cross-section 50 mm  50 mm; (b) rectangular cross-section 100 mm  25 mm; (c) triangular cross-section; (d) circular 

cross-section r = 28.21 mm; (e ) trapezoidal cross-section 100 mm  25 mm keeping same cross-section area of these beams 

i.e. 2500 mm2. These beams tip deflection are expressed as ∆square = 16.031 mm; ∆rectangle = 64.03 mm; ∆triangle = 24.03 mm; 

∆circle = 16.82 mm; ∆trapezium = 16.24 mm are presented in Figure 7 (i) deflection of the beam at free end and (ii) maximum 

bending stress.  

   

b 

h 

r 

a 

b 

h 
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(a)Square 
cross-section. (50×50) 

(i) Deflection of the beam at L=1000 mm and at 
mid.(square)(16.031mm) 

(ii) Maximum bending stress of square cross –
section beam.(240 N/mm2) 

   

(b)Rectangle 
cross-section(100×25) 

(i) Deflection of the beam at free end (ii) Maximum bending stress. 

  

 

(c)Triangular 
cross-section 

(i) Deflection of the beam at free end  

  
 

(d)Circular 
cross-section 

(r = 28.21 mm) 

(i) Deflection of the beam at free end  (ii) Maximum bending stress. 

  

Figure 7. Beams having different 
cross-sections (a) square, (b) rectangular, (c) 
triangular, (d) Circular cross-section (r = 28.21) 
and (e) trapezoid with their (i) deflections of 
the beams at their tip and (ii) maximum bend-
ing stresses. 

(e)Trapezoid 
cross-section (100×25) 

(i) Deflection of the beam at free end  
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3.3. Cantilever beam under uniformly distributed load 

Now, considering the various cross-section of beams with same material and geometric properties as previous case under 

uniformly distributed load as shown in Figure 8. Here, deflections (mm) and bending stress (N/mm2) are given in Table 4 an-

alytically [14] and numerically.    

Deflection (for cantilever with UDL) 
EI

WL

8

4

=  

                

Figure 8. Cantilever beam with UDL 

    Bending moment and shear force are expressed as follows: Shear force Fmax = w  L =5000 N (at L=1000 mm); Bending 

Moment Mmax = w  L  (L/2) = 2500000 N-mm. Here, analytically: (Bending Moment and shear force will be same for all 

cross-section) [14]. 

Table 4. Various cross-section of cantilever (CF) beams under uniformly distributed load.  

Cross-section 
Parameters 

Results Square Rectangle Triangle Circle Trapezium 

Area (mm2) - 2500 2500 2500 2500 2500 

Deflection (mm) 
Analytical 6 24 9 6.28 6.08 

FEM 6.015 24.015 9.013 6.31 6.09 

Bending Stress 
(N/mm2) 

Analytical 120 240 119.95 141.78 113.49 

FEM 120 239.99 - 142.08 - 

3.4. Simply Supported Beam under Uniformly Distributed Load 

Next, considered the various cross-section of simply supported (SS) beams (as shown in Figure 9) under uniformly distributed 

load and presented the deflection (mm) and bending stress (N/mm2) in Table 5.  

                     

L = 1000 mm 

50 mm 

W = 5 KN/m 

P=5KN/m 

50 mm 

L = 1000 mm 
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Figure 9. Simply supported beam subjected uniformly distributed load. 

Table 5. Various cross-section of simply supported (SS) beams under uniformly distributed load.  

Cross-section 

Parameters 
 Square Rectangle Triangle Circle Trapezium 

Area (mm2) - 2500 2500 2500 2500 2500 

Deflection (mm) 
Analytical 0.625 2.5 0.9375 0.6544 0.6334 

FEM 0.628 2.503 0.9407 0.6596 0.6367 

Bending Stress 

(N/mm2) 

Analytical 30 60 30 35.447 28.374 

FEM 30.004 60.008 - 35.518 - 

4. Conclusion 

Here, mathematical modelling of beams is done through finite element approach considering the Euler- Bernoulli beam. 

Governing equations of motion are derived by using Hamilton’s principle. Also, calculated the Hermits shape functions, stiff-

ness matrix, mass matrix and force vector and illustrated here. Thereafter, studied the bending behavior of simply supported 

and cantilever beams considering five different cross-sections of beams and compared the present numerical results of 

ANSYS with available analytical results.       
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